Size-dependence of the heat capacity and thermodynamic properties of hematite (α-Fe2O3)

نویسندگان

  • Claine L. Snow
  • Christopher R. Lee
  • Quan Shi
  • Juliana Boerio-Goates
  • Brian F. Woodfield
چکیده

0021-9614/$ see front matter 2010 Elsevier Ltd. A doi:10.1016/j.jct.2010.04.009 * Corresponding author. Tel.: +1 801 422 2093; fax E-mail addresses: [email protected], Bri (B.F. Woodfield). The heat capacity of a 13 nm hematite (a-Fe2O3) sample was measured from T = (1.5 to 350) K using a combination of semi-adiabatic and adiabatic calorimetry. The heat capacity was higher than that of the bulk which can be attributed to the presence of water on the surface of the nanoparticles. No anomaly was observed in the heat capacity due to the Morin transition and theoretical fits of the heat capacity below T = 15 K show a small T dependence (due to lattice contributions) with no T dependence. This suggests that there are no magnetic spin-wave contributions to the heat capacity of 13 nm hematite. The use of a large linear term to fit the heat capacity below T = 15 K is most likely due to superparamagnetic contributions. A small anomaly within the temperature range (4 to 8) K was attributed to the presence of uncompensated surface spins. 2010 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical and Nano structural properties of Hematite (α-Fe2O3) nanorods in interaction with Bovine Serum Albumin (BSA) Protein Solution

Hematite (α-Fe2O3) nanorods were synthesized by hydrothermal method using Cetyltrimethylammonium bromide (CTAB) as a surfactant agent. To study optical, nanostructural properties, and to control the morphology and shape of nanorods, 0.025 mol L-1, 0.05 mol L-1 and 0.1 mol L-1 concentration of CTAB were used. Moreover, the effect of interaction between bovine serum albumin (BSA) A9418-5G protein...

متن کامل

Enhanced Phtocatalytic Activity of α-Fe2O3 Nanoparticles Using 2D MoS2 Nanosheets

α‒Fe2O3/MoS2 nanocomposites were synthesized via hydrothermal method and characterized in terms of crystal structure, particle size and morphology, elemental purity and optical properties. Results confirmed the formation of α‒Fe2O3/MoS2 nanocomposites containing hematite nanoparticles with average diameter of 40 nm and MoS2 nanosheets with hexagonal crystal structure and sheet thickness o...

متن کامل

Green Synthesis of α-Fe2O (hematite) Nanoparticles using Tragacanth Gel

α-Fe2O3 (hematite) nanoparticles were synthesized using tragacanth gel as biotemplate andiron chloride as the iron source by the sol-gel method. This method has many advantages suchas nontoxic, economic viability, ease to scale up, less time consuming and environmentalfriendly approach for the synthesis of α-Fe2O3 nanoparticles without using any organicchemicals. Nanoparticles were characterize...

متن کامل

Synthesis and Characterization of α-Fe2O3 Nanoparticles by Microwave Method

α-Fe2O3 (hematite) is the most stable iron oxide under ambient conditions. This transition metal oxide has been extensively investigated because it has unique electrical and catalytic properties. In this report, a novel microwave method for preparation of α-Fe2O3 nanoparticles has been developed. The process contained two steps: first, precursor were obtained from a mixed solution of 50 ml of 0...

متن کامل

Low Temperature Synthesis of α-Fe2O3 Nano-rods Using Simple Chemical Route

Iron oxide (Fe2O3) is widely used as a catalyst, pigment and gas sensitive material.  In this article, α-Fe2O3 nano-rods were first synthesized via a simple chemical method using iron(III) nitrate 9- hydrate (Fe(NO3)3.9H2O) as precursor. XRD pattern showed that the iron oxide nanoparticles exhibited alpha-Fe2O3 (hematite) structure in nanocrystals. The single-phase α- Fe2O3 nano-rods were prepa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010